Roll No. Total No. of Pages : 02

Total No. of Questions: 07

M.Sc. (Mathematics) (2019 Batch) (Sem.-2)

ALGEBRA-I

Subject Code: MSM-101 M.Code: 74720

Time: 3 Hrs. Max. Marks: 80

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each.
- SECTION B & C. have THREE questions in each section carrying SIXTEEN marks each.
- 3. Select atleast TWO questions from SECTION B & C EACH.

SECTION-A

1. Answer briefly:

- (a) Prove that $/*=/-\{0\}$ is an Abelian group under multiplication.
- (b) Show that intersection of two subgroups of a group G is also a subgroup of G.
- (c) Define quotient group and give an example.
- (d) Determine whether the permutation (1,2,3,4,5)(1,2,3)(4,5) is even or not?
- (e) Define a subnormal series of a group and give an example.
- (f) State Fundamental theorem on finite Abelian groups.
- (g) Is Z an ideal of Q? Justify.
- (h) Define a simple ring and give an example.

SECTION-B

- 2. (a) Show that every subgroup of an Abelian group is normal.
 - (b) If N and M are two normal subgroups of a group G, show that NM is also normal subgroup of G.

[8]

1 M-74720 (S30)-561

	(b) Let G be a group with $O(G) = pq$, p , q are distinct primes. Show that G is cyclic.	[10]
4.	(a) Show that a group G is solvable if and only if $G^{(n)} = (e)$ for some non-negative in n .	nteger [10]
	(b) Find the derived subgroup of S ₃ .	[6]
SECTION-C		
5.	(a) State and prove Sylow's third theorem.	[10]
	(b) Show that a group of order 36 has either 1 or 4 Sylow 3-subgroups.	[6]
6.	(a) Show that any finite additive Abelian group is internal direct product of its subgroups.	s Sylow [10]
	(b) If I and J are two ideals of a ring R , then show that $I \cup J$ is an ideal of R if and G either I	only if [6]
7.	(a) State and Prove Fundamental theorem of Ring homomorphism.	[10]
	(b) Give an example of a maximal ideal of a ring R, which is not prime.	[6]

[6]

(a) Prove that no group of order 108 is simple.

3.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-74720 (S30)-561